首页> 外文OA文献 >Mantle Dynamics in Super-Earths: Post-Perovskite Rheology and Self-Regulation of Viscosity
【2h】

Mantle Dynamics in Super-Earths: Post-Perovskite Rheology and Self-Regulation of Viscosity

机译:超地球中的地幔动力学:后钙钛矿流变学和   粘度的自我调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simple scalings suggest that super-Earths are more likely than an equivalentEarth-sized planet to be undergoing plate tectonics. Generally, viscosity andthermal conductivity increase with pressure while thermal expansivitydecreases, resulting in lower convective vigor in the deep mantle. According toconventional thinking, this might result in no convection in a super-Earth'sdeep mantle. Here we evaluate this. First, we here extend the densityfunctional theory (DFT) calculations of post-perovskite activation enthalpy ofto a pressure of 1 TPa. The activation volume for diffusion creep becomes verylow at very high pressure, but nevertheless for the largest super-Earths theviscosity along an adiabat may approach 1030 Pa s in the deep mantle. Second,we use these calculated values in numerical simulations of mantle convectionand lithosphere dynamics of planets with up to ten Earth masses. The modelsassume a compressible mantle including depth-dependence of material propertiesand plastic yielding induced plate tectonics. Results confirm the likelihood ofplate tectonics and show a novel self-regulation of deep mantle temperature.The deep mantle is not adiabatic; instead internal heating raises thetemperature until the viscosity is low enough to facilitate convective loss ofthe radiogenic heat, which results in a super-adiabatic temperature profile anda viscosity increase with depth of no more than ~3 orders of magnitude,regardless of the viscosity increase that is calculated for an adiabat.Convection in large super-Earths is characterised by large upwellings andsmall, time-dependent downwellings. If a super-Earth was extremely hot/moltenafter its formation, it is thus likely that even after billions of years itsdeep interior is still extremely hot and possibly substantially molten with a"super basal magma ocean" - a larger version of (Labrosse et al., 2007).
机译:简单的缩放表明超级地球比同等大小的地球更有可能经历板块构造。通常,粘度和热导率随压力而增加,而热膨胀率则降低,从而导致深地幔对流势降低。按照常规思维,这可能不会导致超地球深层地幔对流。在这里,我们对此进行评估。首先,我们在这里将钙钛矿后活化焓的密度泛函理论(DFT)计算扩展到1 TPa的压力。在非常高的压力下,扩散蠕变的激活体积变得非常低,但是对于最大的超地球,沿着绝热层的粘度在深地幔中可能接近1030 Pa s。其次,我们将这些计算值用于最多具有10个地球质量的行星的地幔对流和岩石圈动力学的数值模拟中。这些模型假定一个可压缩的地幔,包括材料性质的深度依赖性和塑性屈服引起的板块构造。结果证实了板块构造的可能性,并显示出一种新颖的深地幔温度自我调节。取而代之的是内部加热使温度升高,直到粘度足够低以促进放射源热的对流损失,这会导致超绝热温度曲线,并且粘度随深度的增加不超过〜3个数量级,而与大型超级地球的对流的特点是上升流较大,而随时间变化的下降流较小。如果超级地球形成后非常热/很融化,那么即使经过数十亿年,其深部内部仍可能非常热,甚至可能被“超级基底岩浆海洋”充分融化-这是(Labrosse等人的(2007年)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号